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Abstract
We find the resolvent at the Kirkwood–Salsburg integral operator in a finite
volume for hard core potentials. We also construct the resolvent at the
Kirkwood–Salsburg operator in the thermodynamical limit for values of
chemical activity z > eC(β)d−1

and for non-negative potentials. Therefore
the phase transition does not occur for these values of chemical activity.

PACS numbers: 05.20.−y, 05.20.Gg

1. Introduction

We describe the states in statistical mechanics by the correlation function or equivalently by
the Gibbs measures [1, 2]. In the grand canonical ensemble, the phase transition can occur
only for values of chemical activity z such that the correlation functions are not analytic. The
main tool to study the analytic properties of the correlation function in the thermodynamical
limit is the Kirkwood–Salsburg (KS) integral equations [3]. We can write the KS equation
in the operator form (16) [3]. The correlation functions are equal to the resolvent of the
KS operator acting on the vector I (15); so the problem of phase transition in gases can be
solved by searching the behaviour of the spectral set in the thermodynamical limit [4, 5].
In a standard approach the only existing results on the spectrum of the KS operator is the
estimation of the spectral radius by means of its norm in the Banach space. This approach
gives us the analyticity of the correlation function for low values of density and equivalently
chemical activity [1, 3, 6]. In this paper we consider the Kirkwood–Salsburg equation on the
cyclic space of the KS operator. This is the smallest possible Banach space which contains
all the correlation functions [5]. In the first section exploring properties of this cyclic space
we find the resolvent of the KS operator for the potential with a hard core for the finite
volume case. It is an important new result which we can utilize in many ways. In the next
section we show one possible application of this result. We introduce the operator (53) for
the non-negative regular potentials in the infinite volume space. This operator has a similar
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construction to the resolvent of the KS operator in a finite volume. We prove that for values
of chemical activity z > eC(β)d−1

the operator is in fact the resolvent of the KS operator in
the thermodynamical limit. This allows us to conclude that the thermodynamical limit of the
correlation functions is an analytic function of positive chemical activity larger than eC(β)d−1

;
thus the phase transition does not occur for such values of chemical activity. It is worthwhile
to stress that the region of analyticity obtained is the only one known for gases with large
values of density. We conclude that the phase transition is possible only for values of chemical
activity z ∈ [{(e − 1)C(β)}−1, eC(β)d−1

] [5, 10].

2. Notation and definition

Let xi ∈ Rν for i = 1, . . . , n, (x)n = (x1, . . . , xn) and � : R+ → R be a Lebesgue measurable
function. We assume that there does exist such r > 0 that for each a ∈ [0, r]�(a) = ∞ and
� is bounded below. Under these conditions, �(|xi − xj |) stands for the two-body interaction
potential for i and j particles, both with a hard core. The potential energy is given by

U(x)n =
∑

1�i<j�n

�(|xi − xj |) (1)

and

W((x)p, (y)l) =
∑

1�i�p,1�j�l

�(|xi − yj |) (2)

U((x)p, (y)l) = U(x)p + W((x)p, (y)l) + U(y)l. (3)

Let � be a bounded region in Rν, χ� the characteristic function of the � and

χ�(x)n =
n∏

i=1

χ�(xi). (4)

Let us define the following sequences of functions:

ρ̂�{al}Ll=1(x)p =
L−p∑
n=0

an+p

n!

∫
�n

e−βU((x)p,(y)n) d(y)n (5)

al ∈ R, l = 1, . . . , L , where L is the greatest possible number of particles contained in the
region � . In this section we consider the interaction with a hard core, so the number L is
finite. Using (5) we write the correlation functions as follows:

ρ̂�

{
zl

��(z)

}L

l=1

(x)p, (6)

where

��(z) =
L∑

l=0

zl

l!

∫
�l

e−βU(x)l d(y)l (7)

means the grand canonical partition function.
Let A� and B� denote two linear operators acting on sequences φ̂ = {φ(x)n}∞n=1 of the

symmetric function φ(x)n in the following way:

(A�φ)(x)p =
∞∑

m=0

1

m!

∫
�m

φ((x)p, (y)m) d(y)m (8)
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(B�φ)(x)p =
∞∑

m=0

(−1)

m!

∫
�m

φ((x)p, (y)m) d(y)m. (9)

Then we have

A�B� = B�A� = I (10)

B�

(
ρ̂�{al}Ll=1

) = {al e−βU(x)l }Ll=1 (11)

in the particular acting on the correlation functions. We obtain

B�

(
ρ̂

{
zl

��(z)

}L

l=1

)
=

{
zl

��(z)
e−βU(x)l

}L

l=1

. (12)

Using the operator notation we can write the KS equations on the space of the sequences
ϕ̂ = {ϕ(x)n}∞n=1, where ϕ(x)n are the measurable complex-valued functions on Rn as follows:

ρ̂� − zK�ρ̂� = I, (13)

where

(K�ρ̂�)(x1) =
∑
m=1

1

m!

∫
�m

K(x1, (y)m)ρ(y)m d(y)m (14)

(K�ρ̂�)(x)n = e−βW(x1,(x)′n)(ρ(x)′n) +
∑
m=1

1

m!

∫
�m

K(x1, (y)m)ρ((x)′n, (y)m) d(y)m

(x)′n = (x2, . . . , xn)

K(x1, (y)m) =
m∏

j=1

(e−β�(x1−yj ) − 1), I = (χ�(x), 0, . . . , 0).

(15)

3. Resolvent of the KS operator in a finite volume

In the case of finite volume the correlation functions (6) are the solution of the KS equation.
The uniqueness of the solution of the KS equation depends on the spectral properties of the
KS operator. This problem was considered by many authors (see [1] and references therein).
Here we present another approach. We consider the KS operator on his cyclic subspace which
allows us to easily get uniqueness of the solution of the KS equation. In the case of hard
core potential the cyclic subspace is the finite dimensional. To follow this very important
observation and using the operators A� (8), B� (9), we can write the KS operator as a matrix,
and then we can calculate the resolvent of this matrix (23). It allows us to find the resolvent
of the KS operator (38). At first we introduce the following cyclic space.

Definition 1. Let D(λ) be the L-dimensional linear space generated by the vectors
{
Kl−1

� I
}L

l=1,
where I = (χ�(x), 0, . . . , 0).

Proposition 1. The space D(λ) consists of the sequences ρ̂�{al}Ll=1 (5).

Proof. The vectors Kl−1
� I are linear independent and they have the form (5) for l = 1, 2, . . . , L.

�
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Definition 2. [4] Let k� be a linear operator on the space of the sequences {al e−βU(x)l }Ll=1
defined in following way:

k�{al e−βU(x)l }Ll=1 = {al−1 e−βu(x)l }Ll=1, (16)

where a0 = −∑L
l=1

a1
1!

∫
�l e−βU(x)l d(x)l .

With the use of definition 1 and equations (8), (9), it is easy to verify that the operator
K� = A�k�B� is the KS operator. Thus,(
K�ρ̂�{al}Ll=1

)
(x1) = (

A�k�B�ρ̂�{al}Ll=1

)
(x1)

=
∑
m=1

1

m!

∫
�m

K(x1, (y)m)ρ{al}Ll=1(y)m d(y)m (17)

(
K�ρ̂�{al}Ll=1

)
(x)n = (

A�k�B�ρ̂�{al}Ll=1

)
(x)n

= e−βW(x1,(x)′n)
(
ρ�{al}Ll=1(x)′n

)
+

∑
m=1

1

m!

∫
�m

K(x1, (y)m)ρ{al}Ll=1((x)′n, (y)m) d(y)m. (18)

We can treat the functions e−βU(x)l as the basis and write the operator (16) in the form of
the L × L matrix


−V − 1

2!

∫
�2 e−βU(x)2(x)2 . . . . . . − 1

L!

∫
�L e−βU(x)L(x)L

1 0 0 . . . 0
0 1 0 . . . . . .

. . . . . . . . . 0 0
0 0 . . . 1 0


 (19)

and equivalently

(k�)kl =



− 1
l!

∫
�

e−βU(x)l d(x)l for k = 1
1 for L � k � 2 il = k − 1
0 other.

(20)

We can calculate the eigenvalues polynomial of this matrix. It is equal to Q�(λ) = z−L��(z),
where λ = z−1.

We define

Qk(λ) =
L∑

l=k+1

λL−l

l!

∫
�l

e−βU(x)l d(y)l (21)

Qk(λ) =
k∑

l=0

λL−l

l!

∫
�l

e−βU(x)l d(y)l. (22)

Now, we can write the matrix inverse to (λI − k�) as

(λI − k�)−1
kl =




− 1
λk−l+1

Ql−1(λ)

Q�(λ)
k � l

1
λk−l+1

Ql−1(λ)

Q�(λ)
k > l

(23)

where k, l = 1, 2, . . . , L and Q�(λ) = Qk(λ) + Qk(λ).
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Our next aim is to find the resolvent of the operator K� on the space D(λ). We introduce
the following pair of L × L additional matrices

Eλ =




1 −λ 0 . . . 0
0 1 −λ 0 0
... 0 1

. . .
...

...
... 0

. . . −λ

0 . . . 0 0 1




(24)

E−1
λ =




1 λ λ2 . . . λl−1

0 1 λ . . . λl−2

... 0 1
. . .

...

...
... 0

. . . λ

0 . . . 0 0 1




(25)

which allows us to find the resolvent of the KS operator. After an easy calculation we see that
the matrix

(
Eλ(λI − k�)E−1

λ

)
kl

=




λl−k−1 k < l

0 l � k < L
Q0(λ)+···+Ql−1(λ)

λL−l+1Q�(λ)
k = L

(26)

is much simpler than (21). The resolvent of K� on the D(�) can be written in the following
way:

(λI − K�)−1 = A�E−1
λ B�A�Eλ(λI − k�)E−1

λ B�A�EλB�. (27)

Our next consideration ensues the following definition.

Definition 3. Let N� : D(�) → D(�) denote the operator

N� = A�




0 1 0 . . . 0
0 0 1 . . . 0
... 0 0

. . .
...

...
... 0

. . . 1
0 . . . . . . 0 0




B�. (28)

One can observe that NL
� = 0 and for aL = 0

N�K�ρ�{al}Ll=1 = ρ̂�{al}Ll=1. (29)

We can write (26) as the following sum:

(
Eλ(λI − k�)E−1

λ

)
kl

=
{
λl−k−1 k < l

0 k � l
+

{
0 k � L
Q0(λ)+···+Ql−1(λ)

λL−l+1Q�(λ)
k = L.

(30)

We can find the first expression of the sum (30) in the space D(�)

A�

{
λl−k−1 k < l

0 k � l
B� = N� + λNλ + · · · + λL−2NL−1

� . (31)

We need the following definition to write the second expression of the sum (30) in the space
D(�).
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Definition 4. Let us define the following projector:∏
{ϕ(x)n}∞n=1 = ϕ(x)1. (32)

The operator (K�N� − I ) acting on ρ̂{al}Ll=1 gives ρ̂�{bl} = (b1, 0, . . . , 0); thus∏
(K�N� − I ) : D(�) → R. (33)

We get the following equality:∏
(K�N� − I )

(
I + · · · + λL−1NL−1

�

)2
ρ̂�{al}Ll=1

= a1
Q0

λL
+ a2

Q0 + Q1

λL−1
+ · · · + aL

Q0 + · · · + QL−1

λ
. (34)

Exploring definition 3 and equation (28) we obtain

A�Eλ (λI − k�)−1 E−1
λ B� = (

N� + λNλ + · · · + λL−2NL−1
�

)
−

{
1

(L − p)!

∫
�L−p

e−βU((x)p,(y)L−p) d(y)L−p

}L

p=1

× 1

Q�(λ)

∏ [
(K�N� − I )

(
I + λN� + · · · + λL−1NL−1

�

)2]
. (35)

According to equation (25), we shall act on equation (30) with the operator A�E−1
λ B�

on the left-hand side and with the operator A�EλB� on the right-hand side. We notice that

A�EλB� = I − λNλ (36)

A�E−1
λ B� = I + λNλ + · · · + λL−1NL−1

λ (37)

and as a result we get

(λI − K�)−1 = −(
N� + λNλ + · · · + λL−2NL−1

�

)
− ρ̂�

{
λL−l

Q�(λ)

}L

l=1

∏ [
(K�N� − I )

(
I + λN� + · · · + λL−1NL−1

�

)]
. (38)

Remark 1. We can check directly that the right-hand side of (33) is really the resolvent of K�

acting on (λI − K�).

4. Resolvent of the KS operator in an infinite volume

In this section we find the resolvent of the KS operator in the thermodynamical limit for
large values of the chemical activity z. Let us assume that the hard core two bodies potential
�(|xi − xj |) is non-negative and regular,

C(β) =
∫ ∞

0
| e−β�(x) − 1| dx < ∞. (39)

Definition 5. Let E denote the Banach space of the sequences ϕ̂ = {ϕ(x)n}∞n=1, where ϕ(x)n
are the measurable complex-valued functions on Rnν and d > 0 with the norm

‖ϕ̂‖ = sup
n�1

dn−1ess sup
(x)n∈Rn

|ϕ(x)n|. (40)
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Definition 6. Let D be the subspace of E generated by the vectors {Kl−1I }∞l=1, where
I = (1, 0, . . . , 0).

It is clear that the KS operator K is bounded on the spaces E

‖K‖ � eC(β)d−1
. (41)

We intend to find the resolvent of the KS operator studying the resolvent in the finite
volume (38). At first we find another form of the operator N� (26), more suitable for
next consideration.

Let us define the two following operators:

(K0(�)ϕ̂) (x)p =
∞∑

n=0

1

n!

∫
�n

K(x1(y)n)ϕ((x)p(y)n) d(y)n (42)

(
K−1

0 (�)ϕ̂
)
(x)p =

∞∑
n=0

(−1)n

n!

∫
�n

K(x1(y)n)ϕ((x)p(y)n) d(y)n. (43)

We have

K−1
0 (�)K0(�) = K0(�)K−1

0 (�) = I ; (44)

when � = Rν we denote K0(R
ν) = K0 and K−1

0 (Rν) = K−1
0 .

We can write each element ϕ ∈ D in the following way:

ϕ = Kψ + αI, (45)

where ψ ∈ D and α is a complex number. We see that

K−1
0 ϕ = {e−βW(xi (x)′p)ψ(x)′p}∞p=2 + αI. (46)

Let us define the operator S as follows:

S{e−βW(xi (x)′p)ϕ(x)′p}∞p=2 = {ϕ(x)p}∞p=1, (47)

S(I) = 0. (48)

For the finite range potentials we have the following equality,

sup
(x)p

|e−βW(xi (x)′p)ϕ(x)′p| = sup
(x)′p

|ϕ(x)′p|, (49)

because for any configuration of the points x2, . . . , xp ∈ Rpν there is a point x1 ∈ Rν such
that e−βW(xi (x)′p) = 1. The same result we get for the potentials tending to zero in infinity.

Using our notation we have in a finite volume

N�ρ̂�{al}Ll=1 = S{ϕ(x)′p}Lp=2 = SK−1
0 (�)ρ̂�{al}Ll=1. (50)

Therefore in the thermodynamical limit we define

N = SK−1
0 (51)

and by (38), (44) we have the following estimation:

‖N‖ � eC(β)d−1
. (52)

We show that the resolvent of the KS operator in the infinite volume for small λ is as
follows:

(λI − K)−1 = −(N + λN2 + · · ·) − ρ̂
∏

[(KN − I )(I + λN + · · ·)] (53)

where ρ̂ fulfils the KS equation (16).
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Assuming that the right-hand side of (48) is the bounded operator, we can easily check
that it is really the resolvent of K on the linear combination of the vectors

{
Kl−1I

}∞
l=1. That

set is dense in the space D, so we can extended the resolvent on all space D.
Our next step is to find an estimation of the correlation functions ρ̂ in the thermodynamical

limit for z > 0. It is a widely known result that exploring the Banach–Alaoglu theorem we
get that ρ̂ = lim�→∞ρ̂� for the real, positive z [3, 8] where

ρ̂� =
{∑L−p

n=0
zp+n

n!

∫
�n e−βU((x)p,(y)n) d(y)n

��(z)

}L

p=1

. (54)

Let us consider the one point correlation functions ρ̂�(x1)

ρ̂�(x1) =
∑L−1

n=0
zn+1

n!

∫
�n e−βU((x1)(y)n) d(y)n

��(z)
. (55)

We integrate both sides of (55),∫
�

ρ̂�(x1) dx1 =
∑L−1

n=0
zn+1

n!

∫
�n+1 e−βU((x1)(y)n) d(y)n dx1

��(z)
, (56)

and find the following estimation∫
�

ρ̂�(x1) dx1 � L

∑L−1
n=0

zn+1

n+1!

∫
�n+1 e−βU((x1)(y)n) d(y)n dx1

��(z)
� L. (57)

In the thermodynamical limit we obtain

1

V (�)
lim�→∞

∫
�

ρ̂�(x1) � lim�→∞
L

V (�)
= ρmax (58)

where ρmax denotes the maximal density

ρmax = lim�→∞
L

V (�)
(59)

and L is the greatest number of spheres with radius r placed in the domain �, and V (�) is a
volume of the domain �. r was chosen to keep the volume equal to one in every dimension.
Since the correlation functions ρ̂ in the thermodynamical limit does not depend on x1, we get

ρ̂1 � ρmax � 1. (60)

In the case of the n-point correlation function we use the following inequalities proved by
Dobrushin and Minlos [9] for the hard core potentials:∫

�k

e−βU((x)p,(y)k)d(y)k � d
′
V (�)

∫
�k−1

e−βU((x)p,(y)k−1) d(y)k−1. (61)

So we obtain∫
�k

e−βU((x)p,(y)k)d(y)k � d
′
V (�)

∫
�k−1

e−βU((x)p,(y)k−1) d(y)k−1

� Ld

∫
�k−1

e−βU((x)p+1(y)k−1) d(y)k−1 (62)

where d = d ′ρ−1
max.

From the above inequalities we obtain the following estimation of the n-point correlation
functions:∑L−p

k=0
zp+k

k!

∫
�k e−βU((x)p,(y)k) d(y)k

��(z)
� d

∑L−p

k=1
zp+k

k!

∫
�k e−βU((x)p+1,(y)k−1) d(y)k−1

��(z)
. (63)
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So in the thermodynamical limit we get

ρ̂(x)p � dρ̂(x)p+1. (64)

Thus

ρ̂1 � dpρ̂(x)p+1.

From above we conclude that

‖ρ̂‖ � 1. (65)

Therefore, we have proven the following

Theorem 1. Let us assume that ρ̂ fulfils the KS equation in the infinite volume for the
non-negative potentials; then the operator

(λI − K)−1 = −(N + λN2 + · · ·) − ρ̂
∏

[(KN − I )(I + λN + · · ·)] (66)

is the resolvent of the KS for z = λ−1 > eC(β)d−1
.
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